
Design and Optimization for Distributed Indexing
Scheme in Switch-Centric Cloud Storage System

Yuang Liu, Xiaofeng Gao, Guihai Chen
Shanghai Key Laboratory of Scalable Computing and Systems,

Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, 200240, China

liuyuang2012@sjtu.edu.cn, {gao-xf, gchen}@cs.sjtu.edu.cn

Abstract—The capacity of data management and the query
performance are two main metrics for today’s cloud storage
system. In this paper, we design a two-layer indexing scheme
of distributed secondary index on switch-centric data center
network (DCN) topologies. We take advantage of the desirable
features of switch-centric topologies, such as stability, scalability,
and fault tolerance, and successfully improve the query efficiency
for cloud storage system. We choose B+-tree as the local layer
index to locate data in each local host, while implement segment
tree as the global layer index to manage a portion of meta-
data published from local hosts. We also optimize the query
processing protocols to reduce false positives and network cost.
In addition, we propose a top-down index selection method for
maintenance. We then analyze the efficiency of query processing
theoretically and calculate the expected number of routing cost
for each query precisely. Finally we validate the efficiency of our
design by experiments and comparison with a previous work.

Keywords—Indexing, Cloud System, Data Center Network

I. INTRODUCTION

Due to the convenient services and versatile functions, the
usage of cloud storage system is becoming a fashion for both
individuals and enterprises in recent years. Google’s GFS [1]
and Bigtable [2], Yahoo!’s Pnuts [3], and Apache Cassandra [4]
are the most well-known examples among varieties of systems.
On the other hand, researchers and storage providers also meet
the challenge of providing powerful, scalable, and efficient
data management scheme to organize huge amount of data and
support fast query processing. To satisfy these demands, the
design of indexing scheme is one method to facilitate effective
data analysis and online transactions.

In a key-value distributed storage system, using only the
primary key to search for data is not sufficient to support
various query processing requirements. Consequently, a com-
mon supplement is to consider secondary index. Since such
index may distribute randomly among servers, an efficient
searching strategy is to construct a global index above the
local index, which is known as the two-layer indexing [5]–[8].
The global index is responsible for some meta-data information
published from servers, while the local index manages the data

This work has been supported in part by the National Natural Science Foun-
dation of China (Grant number 61202024, 61472252, 61133006, 61422208),
China 973 project (2014CB340303), the Natural Science Foundation of Shang-
hai (Grant No.12ZR1445000), Shanghai Educational Development Foundation
(Chenguang Grant No.12CG09), Shanghai Pujiang Program 13PJ1403900, and
in part by Jiangsu Future Network Research Project No. BY2013095-1-10 and
CCF-Tencent Open Fund.

X. Gao is the corresponding author.

stored on the host. Each host owns a portion of global index.
Typical two-layer indexing examples, including CG-Index [6],
RT-CAN [7], and BIDS [8], are based on peer-to-peer (P2P)
networks. However, Data Center Network (DCN) [9]–[17]
overshadows P2P network on scalability, reliability, and se-
curity, and gradually becomes a trend in both academia and
industry. Therefore, the implementation of powerful indexing
schemes on DCN architectures is a new heating topic.

In this paper, we optimize the current two-layer index-
ing scheme, and design for switch-centric DCN topologies.
Switch-centric, especially tree-like topologies, such as Fat
Tree [9], VL2 [10], and Aspen Tree [11], are fairly popular
designs in research area, and share the features of high band-
width, cost efficiency, and fault tolerance. We compare and
summarize the characteristics of switch-centric architectures
and then build our indexing scheme specifically on such
topologies to maximize the topological benefits.

In detail, we construct a B+-tree as the local index for
each host to index local data, and a global index on top of
each local index. Global index maintains the data information
globally for all hosts in the DCN, while each host only contain
a portion of it due to their responsible data ranges. Based on
the features of infrastructure, we use the segment tree, a data
structure for storing intervals, as the global index. Compared to
traditional table or list, segment tree could reduce the search-
ing time significantly yet remain compatible with key-value
storage. False positives in query can be decreased by efficient
publishing scheme. Techniques in query can also reduce the
effect of false positives and the hops in query consequently.

The maintenance of index is a difficult and seldom referred
work. We define the weight of nodes in B+-tree and propose a
top-down index selection scheme to reduce the false positives
and adapt to the dynamic workload. Besides, the mathematical
analysis of point query based on general tree-like topologies
is also presented in the paper. To the best of our knowledge,
we are the first to estimate the excepted number of hops each
point query needs in general switch-centric DCN. It is different
from traditional P2P network that we can precisely predict
the routing cost per query via physical hop counts, and thus
provide strong time guarantee for query efficiency. At last,
we offer various numerical experiments to further validate the
efficiency of the system and prove the correctness of analysis.

The contributions of this paper are listed as follows:

1. We optimize the two-layer indexing scheme built on switch-
centric DCN topologies, including Fat Tree, VL2, etc. We

20th IEEE Symposium on Computers and Communication (ISCC)

978-1-4673-7194-0/15/$31.00 ©2015 IEEE 582

use segment tree as global index and B+-tree as local index
to handle query efficiently and manage data effectively.

2. We propose a top-down index update scheme based on
the system to select B+-tree nodes published to the global
index. The selection of index can reduce false positives and
adapt to different distributions of data and queries.

3. We give theoretical analysis on the efficiency of point query.
We also design experiments to demonstrate the performance
of indexing scheme and prove the correctness of our theo-
retical analysis on various switch-centric topologies.

The rest of the paper is organized as follows: In Sec. II,
we introduce some previous related work. In Sec. III, we list
and compare switch-centric topologies that can be applied to
our system. Section IV explains the global and local index
in detail. Section V discusses the index update scheme. The
query processing based on the two layer index is given in
Sec. VI. In Sec. VII, we provide theoretical analysis on point
query performance. The evaluation of efficiency is given in
Sec. VIII. Finally we conclude the whole paper in Sec. IX.

II. RELATED WORK

With the exponential growth of data, the distributed system
is becoming a significantly powerful tool for data management.
Rather than classic SQL database, non-relational database is
especially suitable for distributed systems. Key-value based
systems Cassandra [4], Dynamo [18], and Voldemort [19]
are eminent commercial NoSQL applications with eventual
consistency. The open source systems HDFS, HBase, and
HyperTable, implement Google’s GFS [1] and BigTable [2].
They provide good platforms for exploration and optimization.

Data center network (DCN) is the backbone and infrastruc-
ture of a data center. The distributed resources in servers are
interconnected and transmitted via routers, switches, and links.
Stability, scalability, and load balance are advantages of the
cloud system using DCN. The conventional DCN topologies,
including Fat Tree [9], VL2 [10], and Aspen Tree [11], etc,
adopt a switch-centric design. Server-centric topologies, such
as Bcube [14], Dcell [15], and FiConn [16] also draw some
researches’ attention due to their regularity and symmetry.

The design and analysis for two-layer indexing scheme
on P2P network are discussed thoroughly in [5]–[7], [20].
However, P2P networks, such as BATON [21] and CAN [22],
can no longer meet the requirement of today’s cloud systems.
Optimization for two-layer indexing on DCN is a new topic.
Previous similar work RT-HCN [23] concentrates on the multi-
dimension data indexing on HCN, while FT-Index [24] focuses
on the one-dimension data indexing on Fat Tree.

III. SWITCH-CENTRIC ARCHITECTURES

Switch-centric is one of the main categories in the ar-
chitecture of DCN. In switch-centric, switches dominate the
interconnection of resources and the routing approach. The
conventional three-tier data center design met the problem
of oversubscription, bad fault tolerance, and high power con-
sumption. Other newly proposed tree-like topologies, including
Fat Tree [9], Aspen Tree [11], and Portland [12], solved these
issues. Meanwhile, Jellyfish [13] and SPAIN [17] are examples
of switch-centric topologies without tree structure.

TABLE I. LIST OF NOTATIONS

Notation Definition

n Number of switch levels
k Number of ports per switch
Li Level i
hi Host i
H Number of supported hosts
S Number of switches per level (except Ln)
β Density of data
Si Segment tree on hi

Bi B+-tree on hi

pi Number of pods at Li

mi Number of switches per Li pod
ri Number of Li−1 pods to which an Li switch

connects
ci Number of connections from an Li switch to

Li−1 switches per pod

Fig. 1. Fat Tree topology (n = 3, k = 4)

We use symbols to denote some common attributes of
switch-centric topologies. k indicates the number of ports
in each switch, and n represents the number of switch lev-
els. We refer to each switch level from bottom to top as
L1, L2, · · · , Ln, and host level as L0. We denote number of
switches per level (except Ln) and supported hosts as S and
H respectively. Table I summarizes the notations used in this
paper. More notations will be introduced in subsequent texts.

A. Examples of Switch-Centric Topologies

A typical k-ary Fat Tree proposed in [9] consists of hosts
at the bottom and three levels of switches. Each k-port switch
is directly connected to k/2 switches or hosts in the lower
level. The remaining k/2 ports are connected to k/2 ports in
the upper layer of the hierarchy. However, all k ports of an L3

switch connect to L2. Figure 1 shows an example of Fat Tree.

Aspen Tree [11] is also a multi-root tree switch-centric
topology. The general connection rule of links is similar to Fat
Tree, while there are redundant links between switches in some
adjacent level. Each level of the tree except Ln consists of S
switches, while there are only S/2 switches in Ln. Figure 2
shows an instance of 3-level, 6-port Aspen Tree.

Virtual Layer 2 (VL2) [10] applies a similar tree-like
topology to the design. The topology in VL2 is very similar
to Fat Tree, except that it adds redundant links between Ln

and Ln−1. Thus VL2 performs a better load balance and fault
tolerance. Figure 3 shows an n = 3, k = 4 VL2 architecture.

Jellyfish [13] is a representative of switch-centric topology
without tree structure. Each switch in Jellyfish is connected
to a certain number of servers and other switches, and the
switch network is interconnected as a random regular graph.

20th IEEE Symposium on Computers and Communication (ISCC)

583

Fig. 2. Aspen Tree topology (n = 3, k = 6, C = 〈1, 3〉) Fig. 3. VL2 topology (n = 3, k = 4) Fig. 4. Jellyfish topology

The advantages of Jellyfish are flexibility, scalability, and high
bandwidth. Figure 4 shows a sample Jellyfish architecture.

B. Comparison of Topologies

The topology determines the connection of switches and
routing scheme. We can define some parameters to identify the
type of trees and describe the property of them accurately. The
comparison of topologies will facilitate following discussion
on query processing and performance analysis.

A pod in tree-like topology includes the maximal set of Li

switches that all connect to the same set of Li−1 switches [11].
The switches combined together in Fig. 2 are grouped into
a pod. Let pod division parameters pi and mi describe the
number of pods at Li, and the number of switches per Li pod,
respectively. ri is the number of Li−1 pods to which each Li

switch connects, while ci denotes the number of connections
from an Li switch s to each of the Li−1 pods that s neighbors.
ri and ci define the fault tolerance of each level.

Now, we can use n, k, and C = 〈c2, c3, · · · , cn〉 to identify
and differentiate each type of tree. For Fat Tree, c2 = c3 =
· · · = cn = 1, while for the topology used in VL2, c2 = c3 =
· · · = cn−1 = 1 and cn > 1. Aspen Tree is a more general
form, the restriction is only c2 · c3 · · · · · cn > 1.

Based on the generation algorithm in [11], we quantify the
general structure of tree-like topology in Table II. For each
level Li from L1 to Ln−1, mi multiplies with a factor of ri
while the trend of pi reverses. Therefore, the switch number
in these level remains a constant S. The maximum number of
hosts supported by the tree is H = p1 · k2 = kn

2n−1·∏n
j=2 cj

. Note

that k should have enough divisors to make H be an integer.

TABLE II. STRUCTURE OF GENERAL TREE-LIKE TOPOLOGIES

Li L1 · · · Li · · · Ln−1 Ln

pi
kn−1

2n−2·
n∏

j=2
cj

· · · kn−i

2n−i−1·
n∏

j=i+1

cj

· · · k
cn

1

mi 1 · · · ki−1

2i−1·
i∏

j=2
cj

· · · kn−2

2n−2·
n−1∏

j=2

cj

kn−1

2n−1·
n∏

j=2

cj

ri
k
2 · · · k

2ci
· · · k

2cn−1

k
cn

ci 1 · · · ci · · · cn−1 cn

We do not discuss much about non-tree-like DCN architec-
tures in further sections, since they are not as popular as tree-
like structures and use arbitrary topologies. However, we argue
that two-layer indexing can also be applied to these switch-
centric topologies with proper routing scheme given.

IV. TWO LAYER INDEXING

Since the local data on hosts are distributed in random,
we need to build secondary index on the system. With the two
layer indexing, we can locate all the possible hosts whose index
ranges intersect with the queried key, and then do the local
search on these hosts to fetch the data. In this way, we divide
the query processing into two phases. We build the global
index to accomplish the first phase, and use local index to
search on one or more hosts in the second phase.

A. Global Index and Local Index

We first assign the range of data that each host is responsi-
ble for, i.e. the potential indexing range. Here we use a simply
scheme [24]. Assume the boundary of the dataset is denoted
as D ⊆ [L,U), and we number hosts as h1, h2, · · · , hH from
left to right. Then the potential indexing range of each host

pri = [L+ (i− 1) · U−L
H , L+ i · U−L

H), 1 ≤ i ≤ H. (1)

Equation (1) is only a simple distribution way. The poten-
tial range may be arbitrarily assigned in practice as long as
hosts can find out the server responsible for the query range.

For searching data on servers efficiently, we build local
indexes for data. Here we use B+-tree to index data, which
can speed up the local search and reduce I/O cost. In the B+-
tree, key-value pairs are pointed to by the leaf nodes, and other
inner nodes store keys and pointers. To manage the intervals
published by local B+-trees, we apply another tree structure,
segment tree [25], as the global index. The data we store and
query in segment tree are intervals.

In the pre-processing stage of the system, each B+-tree
publish some nodes to the corresponding global index. The
information published by the local index will include the key
range in the node, and some meta-data, for example local
index ip and address of the node in the B+-tree.

B. Segment Tree

Segment tree [25] is a binary tree structure for storing
intervals. In segment tree, the whole range is divided into
several elementary intervals, and each of them is represented
by a leaf node. The range of an inner node is the union of its
children. Evidently, the root represents the whole range. When
storing the intervals, we will choose the nodes whose ranges
are included in the interval range, while their parents are not.

After collecting the intervals published from each local
host, the construction of the segment tree will be executed.
The insertion of intervals is recursive. The build of the segment
tree is in O(n log n) time and consumes O(n log n) storage,

20th IEEE Symposium on Computers and Communication (ISCC)

584

where n denotes the total number of intervals stored and k
denotes the number of reported intervals. Similarly, we can
use a recursive method to do the point query. From the root
node, we determine whether the point intersects with its left
child or right child, and then use its child as new root until
we meet leaf node. All intervals saved in the nodes on the
searching path should be returned. Using the top-down method,
the efficiency is in O(log n + k) time. Compared to tradition
lists or tables, the segment tree can reduce searching time and
I/O cost remarkably. In the range query, a simple idea is to
do point query using the two boundary of the range, and then
return all intervals stored in the nodes between the results of
two point query in one level.

To store the segment tree effectively, [26] proposed two-tier
Endpoints Index (EPI) and MRSegmentTree (MRST) imple-
mentation for key-value storage on cloud systems. Moreover,
Updates Index (UI) will facilitate the operations of insertion
and deletion on segment tree before the reconstruction, al-
though segment tree is a static data structure in theory. We
adopt the idea of two-tier segment tree to the global index.

C. False Positive

When we publish B+-tree nodes to the global index, we
will inevitably introduce false positives in query. For example,
if the elements in a B+-tree node are {2,4,19,33}, then we
publish [2,33] to the global index. However, there are actually
only 4 keys in this node, while we cannot fetch the result if
we search other keys (3,5,6,. . .), even if they are in [2,33].
False positive will cause redundant intervals in global index
and extra hops in query. [24] proposed two alternatives, FT-
Gap and FT-Bloom, to solve the problem. In FT-Gap, the g
biggest gap in the intervals published from local host to global
index will be eliminated and g+1 segments will be published.
In FT-Bloom, we use Bloom filter to examine whether a key
is in the local B+-tree or not. Both FT-Gap and FT-Bloom
can be applied to our system to decrease the false positive
ratio. Less false positives can reduce traffic load effectively in
either parallel or sequential visit. More details about the two
strategies can be referred in our another work [24].

V. UPDATE AND MAINTENANCE

In the pre-processing stage of the system, we publish local
B+-tree nodes to the global index. However, we can select
different nodes to publish. If the published nodes are closer to
leaf nodes, less false positives will generate, yet there will be
more global index nodes and update costs. The selection of
published nodes is correct if and only if the index is complete
and unique [7]. In other words, there must be one and only
one node published on the path from each leaf nodes to the
root of B+-tree. Among these correct selections, we use a top-
down approach to publish a portion of nodes to reduce false
positives. When the system has been running for some time,
the selection procedure can be reran to update the global index.

We define the weight of a leaf node as the number of times
it has been visited during queries. The weight of an inner node
is the sum of the weights of its children. Then we can calculate
the weight of each node in the B+-tree recursively. The weight
of node indicates the frequency of visits. If the weight of a
node is relatively high, it implies either some keys in the node

Fig. 5. An example of published nodes in B+-tree (l = 1, s = 1)

Algorithm 1: NODESELECT(root, level)

Input: The root of a subtree root and current tree level
1 C = {c1, c2, . . . , c|C|} ← child(root)
2 if isleaf(root) then
3 PUBLISH(root)
4 else if level ≤ l then
5 for ∀ci ∈ C do
6 NODESELECT (ci, level + 1)

7 else
8 sort C by weight
9 for ∀ci ∈ C ∧ i ≤ s do

10 NODESELECT(ci, level + 1)

11 for ∀ci ∈ C ∧ i > s do
12 PUBLISH(ci)

(or in its children) are frequently queried or the range of the
node is so wide that causes many false positives. Whatever the
case is, we should select its descendant nodes as closer to the
leaf nodes as possible in order to reduce searching costs or
false positives, if the weight of a node is high enough.

Based on the idea of weight, we can select index com-
pletely and uniquely in a top-down approach. Here we use two
parameters l and s. All the published nodes are below level
l in the B+-tree (root node as level 0). After level l, we will
publish all but s biggest weight nodes among siblings. For
those s nodes, we will recursively publish all but s biggest
weight nodes among their descendants, until we reach leaf
nodes. Figure 5 is an example of published nodes (dark nodes).

The selection algorithm is shown in Alg. 1. At the begin-
ning, we calculate the weight of each node in the B+-tree.
From root to level l, we descend to the lower level recursively
(Line 6). After level l+1, we select the s largest weight nodes
to descend the same as before (Line 10), while publish other
nodes directly (Line 12). If the node is already a leaf node in
this process, then we simply publish it (Line 3).

VI. QUERY PROCESSING

The query processing is similar to most two layer indexing
schemes. However, to reduce the hops needed in query, we
sort the possible hosts and visit them in sequence in the
second phase. In point query, the query host is to retrieve
the corresponding value of the key k. In the first phase,
the responsible host for k would be found according to the
potential indexing range at first. Then we do point search
on the segment tree so that all possible hosts that store the
value of the key could be known. Actually, there is no more
than one host stores the value among these, while others are
false positive hosts. Thus we visit hosts one by one, rather

20th IEEE Symposium on Computers and Communication (ISCC)

585

than forward the query in parallel. In order to diminish the
hops taken in this process, we first sort these intervals by their
hosts’ ip and then we are able to visit the nearest host every
time. In the second phase, we forward the query to hosts in
consequence, and search the local B+-tree. If the result value
is returned from the search, we simply end up here and return
the value to the query host. Otherwise we continue to search
the next host until there are no more possible hosts.

In range query, given the query range [l, u], all values
whose keys intersect with the range are to be returned. Note
that the point query is just a special range query when l = u.
In the first phase, we would find one or more hosts whose
potential indexing ranges intersect with the query range. After
collecting all possible intervals, we sort these intervals similar
to the point query. The second phase visits possible hosts one
by one and add values to the result set continuously. Finally
we return the set of values to the query host.

VII. THEORETICAL ANALYSIS

For the cloud system, the performance of query is mainly
determined by the network connection efficiency. Thus, the
dominant metric of performance is the hops for each query,
rather than efficiency of search on global or local index.
Therefore, a good query processing can significantly reduce the
hops each query takes. However, the network cost of traditional
P2P overlay network is unable to be predicted because logic
hops are not necessarily equivalent to physical hops. The
desirable characteristics of DCN network make it possible to
estimate the hops in a query. Based on the query processing
scheme and the uniform distribution of data, we predict the
performance of point query in switch-centric topologies.

Theorem 1. The expected number of hops point query takes
is expressed by

E[pq] =(2− β) · 2
n−1∑
i=1

kn−i

2n−i ·∏n
j=i+1 cj

+ 4n+ β−

2

n∑
i=1

2n−i+1 ·∏n
j=i cj

kn−i+1
+ (2− β)E[fp],

(2)

where β denotes the density of data, β ∈ [0, 1], and E[pq] and
E[fp] denote the expected number of hops in point query and
false positive, respectively.

Proof: In the first phase, the query will be forwarded to
the host which is responsible for the key. If the responsible host
is just the query host, then it takes 0 hops. Otherwise, there

are
∏i

j=1 rj−
∏i−1

j=1 rj possible hosts to which it takes 2i hops
to forward the query. Since the potential ranges of each host
are disjoint, there must be only one responsible host. Assume
the query is distributed evenly in the range, then the expected
number of hops in the first phase is

n∑
i=2

∏i
j=1 rj −

∏i−1
j=1 rj

H
· 2i = 2n−

n∑
i=1

2n−i+1 ·∏n
j=i cj

kn−i+1
.

Next, the query will be forwarded to the possible hosts
so as to do local search. The query will be forwarded to
the nearest host every time, and total number of these hosts
is E[fp] + 1. The intra-pod hops of adjacent hosts and the

additional inter-pod hops will both be taken into consideration.
So the expected number of hops in the second phase is

(E[fp] + 1) +

n−1∑
i=1

pi = 2
n−1∑
i=1

kn−i

2n−i ·∏n
j=i+1 cj

+ E[fp] + 1.

Additionally, note that the key is not certainly in any of the
hosts. If the key is not in the data set, then the final number
of average hops will be twice of the formula above. Denote
the number of all keys stored in the system as α, then data
density β = α/(U − L). So the expected number of hops in
the second phase after modification is

(2− β) ·
(
2

n−1∑
i=1

kn−i

2n−i ·∏n
j=i+1 cj

+ E[fp]

)
+ β.

Finally, the fetched value would be returned back to the
initial query host. The cost is the same as the first phase.
Combining the three intermediate results together, we can get
the conclusion in Eq. (2).

VIII. PERFORMANCE EVALUATION

In the experiment, we simulate the performance of the
system on different switch-centric topologies. We store the data
randomly across all the hosts and index them by the key. We
use non-negative integers in a decided range as keys. Average
keys per host (kph) vary from 2,000 to 20,000, and the whole
dataset D ⊆ [0, H · kph). Notice that not all keys in the range
are in the dataset, since we defined data density β, the number
of keys |D| = β ·H · kph.

To show the advantage of segment tree, we compare the
number of visited intervals with and without segment tree.
Figure 6 shows the number of visited intervals with segment
tree and only with traditional list (used in CG-Index [6]). We
learn that segment tree can significantly reduce the searching
time in query. Moreover, as the published intervals increase,
the visited intervals also go up for the list. However, the change
is only slight for segment tree.

TABLE III. NETWORK COST ON SWITCH-CENTRIC TOPOLOGIES

β 1 0.9 0.5 1 0.9 0.5

kph
4-level, 6-port, Fat Tree

C = 〈1, 1, 1〉
4-level, 6-port, Aspen Tree

C = 〈3, 1, 1〉
2000 95.76 103.59 132.23 59.52 63.52 79.72
5000 96.17 103.01 133.15 59.67 63.59 79.67

10000 94.43 102.82 133.66 59.49 63.57 79.34
20000 95.84 103.41 133.72 59.13 63.69 79.63
predict 95 102.7 133.5 59 63.1 79.5

kph
4-level, 6-port, VL2

C = 〈1, 1, 3〉
3-level, 8-port, Fat Tree

C = 〈1, 1〉
2000 41.81 44.23 53.72 53.54 57.56 72.65
5000 41.63 43.97 53.68 53.93 57.75 72.95

10000 41.46 43.92 53.49 53.86 57.54 73.27
20000 41.75 43.83 53.45 53.51 57.92 72.52
predict 41 43.5 53.5 53 56.9 72.5

Next, we simulate the performance of point query to verify
Eq. (2). The queries generated in this experiment follow the

20th IEEE Symposium on Computers and Communication (ISCC)

586

Fig. 6. Number of visited intervals for segment tree
compared with CG-Index (in logarithm scale)

(a) l = 1 (b) l = 3

Fig. 7. Performance of index update scheme on 4-level, 6-port Fat Tree (Zipf)

uniform distribution. We record the average hops of each query
under different kph and β. To compare with our theoretical
analysis, we use pq − (2 − β)fp as the metric. Table III
demonstrates the result on four trees. The prediction value is
the expected hops in Eq. (2). From the result we know that
our analysis fits the practical situation very well.

To examine the performance of the indexing update
scheme, we use Zipfian distribution query to record the average
hops in point query under different l and s. For each group
of experiment, we do 10,000 point queries and run the index
selection procedure for 5 times. From Fig. 7 we learn after the
second selection, the average hops reduce greatly, although it
may fluctuate after more update. We also learn the influence
of s on the false positives is less significant if l is higher. In
practical, we had better test different combination of l and s in
advance based on the distribution of data and query, and also
the capacity of global index to achieve a better performance.

IX. CONCLUSION

In this paper, we optimize the two-layer indexing in dis-
tributed storage system on switch-centric DCN topologies. The
local index, B+-tree, and the global index, segment tree, are
adopted to manage data. Segment trees are responsible for
the meta-data of a portion of intervals published by local
B+-tree. Various types of queries can be supported by the
two-layer indexing. We also design the top-down scheme of
index update. Moreover, we give theoretical analysis on the
performance of point query. Finally we simulate the system
and use experiments to validate the efficiency of our work.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43,
2003.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems, vol. 26, no. 2, p. 4, 2008.

[3] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” in VLDB, vol. 1, no. 2, 2008,
pp. 1277–1288.

[4] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[5] S. Wu and K.-L. Wu, “An indexing framework for efficient retrieval on
the cloud,” IEEE Data Engineering Bulletin, vol. 32, no. 1, pp. 75–82,
2009.

[6] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient B-tree based
indexing for cloud data processing,” in VLDB, vol. 3, no. 1-2, 2010,
pp. 1207–1218.

[7] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-
dimensional data in a cloud system,” in SIGMOD, 2010, pp. 591–602.

[8] P. Lu, S. Wu, L. Shou, and K.-L. Tan, “An efficient and compact indexing
scheme for large-scale data store,” in ICDE, 2013, pp. 326–337.

[9] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-
tion Review, vol. 38, no. 4, pp. 63–74, 2008.

[10] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible data
center network,” ACM SIGCOMM Computer Communication Review,
vol. 39, no. 4, pp. 51–62, 2009.

[11] M. Walraed-Sullivan, A. Vahdat, and K. Marzullo, “Aspen trees: Balanc-
ing data center fault tolerance, scalability and cost,” in CoNEXT, 2013,
pp. 85–96.

[12] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A scalable
fault-tolerant layer 2 data center network fabric,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4, pp. 39–50, 2009.

[13] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in NSDI, vol. 12, 2012, p. 17.

[14] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: A high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 63–74, 2009.

[15] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A scalable
and fault-tolerant network structure for data centers,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 4, pp. 75–86, 2008.

[16] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu, “FiConn: Using
backup port for server interconnection in data centers,” in INFOCOM,
2009, pp. 2276–2285.

[17] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “SPAIN:
COTS data-center Ethernet for multipathing over arbitrary topologies,”
in NSDI, 2010, pp. 265–280.

[18] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 6, pp. 205–220, 2007.

[19] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project Voldemort,” in
FAST, 2012, p. 18.

[20] G. Chen, H. T. Vo, S. Wu, B. C. Ooi, and M. T. Özsu, “A framework for
supporting DBMS-like indexes in the cloud,” in VLDB, vol. 4, no. 11,
2011, pp. 702–713.

[21] H. V. Jagadish, B. C. Ooi, and Q. H. Vu, “BATON: A balanced tree
structure for peer-to-peer networks,” in VLDB, 2005, pp. 661–672.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in SIGCOMM, vol. 31, no. 4,
2001.

[23] F. Li, W. Liang, X. Gao, B. Yao, and G. Chen, “Efficient R-tree based
indexing for cloud storage system with dual-port servers,” in DEXA,
2014, pp. 375–391.

[24] X. Gao, B. Li, Z. Chen, M. Yin, G. Chen, and Y. Jin, “FT-INDEX: A
distributed indexing scheme for switch-centric cloud storage system,” in
ICC, 2015.

[25] J. L. Bentley, “Solutions to Klee’s rectangle problems,” Technical report,
Carnegie-Mellon Univ., Pittsburgh, PA, Tech. Rep., 1977.

[26] G. Sfakianakis, I. Patlakas, N. Ntarmos, and P. Triantafillou, “Interval
indexing and querying on key-value cloud stores,” in ICDE, 2013, pp.
805–816.

20th IEEE Symposium on Computers and Communication (ISCC)

587

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

